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1. Statistical Science, data analysis, and Buffalo snowfall

Statisticians complain about the failure of universities
to adequately educate students on how to analyze statistical
data. At the same time some statisticians state that data
analysis is an art, and thus cannot be taught. When these
statisticians speak of statistical science it is difficult to
imagine to what they are alluding since they seem to
sneeringly reject all attempts to reason, and reach consensus,
about the evaluation of methods to be used as part of the process
of statistical data analysis.

I would like to propose a data set which I believe provides
a useful test case for various approaches to data analysis,
namely the annual time series of snowfall in Buffalo, N.Y. The
segment of that series which I will discuss is 1910-1972,
although it has many interesting features when extended to 1981.

The data analysis question to be considered is: What probability

distributions can be used to describe Buffalo snowfall. An

ever-present hypothesis to be considered is whether Buffalo

snowfall is normal.

2, Functions that describe probability distributions

The probability law of a continuous random variable X can

be described by one or more of the following functions:
(1) Distribution Function F(x) = Pr [X<x]

(2) Probability Density Function f£f(x) = F'(x)




-1

(3) Quantile Function Q(u) = F (u)

——
[l

inf {x: F(x) > u}

inf {x: F(x) = u} 1if F is continuous

x such that)F(x) = u if F increasing at x

(4) Quantile-Density Function q(u) = Q' (u)
(5) Denstity-Quantile Function fQ(u) = £(Q(u))

Theorem: For F continuous

FQ(u) = u , £Q(u) q(u) =1

3. Raw functions that describe samples

Data xl,...,xn is called a random sample of X when
Xl,...,Xn are independent random variables identically
distributed as X. An important role in the analysis of a sample

is played by the order statistics X(l) < X(2)<...< X(n)

(1) Sample Distribution E(x) = fraction X .,Xn <X

1’

X

“a X R

(2) Sample Probability Density, or Histogram, estimates

f(x) by a numerical derivative

%(x) - F(x+h) th(x-h)

(3) Sample Quantile Q(u) = F~l(u)

-1
- Xgye gt sl

A universal display of any data set is provided by the quantile
box plot introduced in Parzen (1979).




} (4) Sample Quantile-Density is a numerical derivative

- Q(uth) - Q(u-h)
q(u)—Qu 2hQ_‘-l

(5) Sample Density-Quantile = £Q(u) = 1/q(u).

An important formula is

. . _ "
EX(5)) = £Gep = 2 (@) (K(y4y-X(5o1)))

4. Smooth functions that describe samnles and estimate

probability distributions

The functions F, f, Q, q, fQ that represent the true

probability distribution of a random variable X are estimated by

smooth functions F, f, Q, q, Ea which are derived from the raw

descriptive functions F, £, Q, q, £Q. One distinguishes between
parametric and non-parametric methods of estimating smooth

functions.

A parametric estimation method : (1) assumes a family

Fe, fe, Qe, Qg feQe of functions, called parametric models,

which are indexed by a parameter § = (el,..., ek); (2) forms i
estimators 6 = (81,...,6k) of 6; (3) forms smooth functions by !

F(x) = Fg(x), £(x) = £5(0),

Qu) = Q(w), qu) = qg(w),
8Q(uw) = £5Q5(w).

A non-parametric estimation method forms estimators which
are not based on parametric models. Important examples of

non-parametric estimators of a probability density £(x) and a




quantile-density q(u) are respectively

f(x)

5 TRED aF

On| =

3 (u) /RS aw
(o)

for suitable kernels K(-¢) and bandwidth §.

5. Parameter estimation and information divergence

When a parametric model fe is assumed, parameter estimators
® are often determined by minimizing a ''distance" between f(x)
and fe(x). A '"distance'" between two probability densities f(x)

and g(x) is denoted I(f;g) and is called an information divergence

between f(x) and g(x). It is usually not symmetric in f and g.

It does not satisfy the triangle inequality for a metric. But

it does satisfy I(f;g) > 0 and I (f;g) = O if and only if f = g.
The most famous, and most important, definition of

information divergence is
1)(£:8) = J7 - logt (X)) £x) dx
called the information divergence of order 1, or Kullback-

Liebler information divergence. Information divergence of

order o is defined for a>0 (but o # 1) by
; _ -1 o 1-
I,(£ig) = =5 log [° {§§§}} %e(x) dx.

The most important values of a are 0.5<a<2.
Bi-information divergence is defined by

II(f;g) = ["|log {B$X1|2 £(x) dx;
-o X

it may be regarded as related to I,(g:f).




Information divergence of order 1 has an important decomposition:

I,(f;g) = H(f;g) - H(f)

defining

H(f;g) = [ {-log g(x)} £(x) dx,

H(f) = H(f;£) = [~ {-log f(x)} £(x) dx.

- 00

We call H(f;g) the cross-entropy of f and g, and call H(f) the
entropy of f.

Maximum likelihood parameter estimation can be shown to
be equivalent to minimum cross-entropy estimation. The

likelihood function of a parametric model fe is defined by

L(fy) = log £,(X;,....X)

n
tzl log f4(X,)

One may verify that

L(fe) n ]m log fe(x) d%(x)

-n H(f; fe) .
The maximum likelihood parameter estimator 8, defined by

.y - Mmax
L(£) = "F L(fy)
clearly satisfies
, min ¢
H(f;fe) = % H(f;fe).

It also satisfies

I, (£:£5) = M50 1, (£:£,).

In general parameter estimators ® are found by minimizing
IG(E;fe) or Ia(fe;g)' Chi-squared estimators minimize Iz(fe;f)

while modified chi-squared estimators minimize I,(E;fq).

i : . aasimaoss




To compute Il(f;fe) one needs to compute H(f). A useful

formula for accomplishing this is

H(f) = [T{-log f(x)} dF(x)

_ It {-1og £Q(u)} du
(o]

fl log q(u) du.
)

The value of Il(fifé) can be used to test the goodness of fit

of the parametric model fe.

6. Information and bi-information parameter estimation, and

comparison distribution functions

Given a sample with sample probability density function E
and parametric model fe, one can form diverse parameter
estimators, denoted 8 and 5, corresponding to two choices of
information divergence which we take to be: (1) Il(g;fe)' and
(2) Iz(fe;g) or II(E;fe). We call 6 and g diverse parameter
estimators. For greater precision we call 6 the ©rder 1)
information estimator, ana § the bi-information estimator.

When the parametric model f.e is exact, the diverse
parameter estimators have equivalent statistical properties;
they are both asymptotically efficient estimators, and are not
significantly different from each other.

When the values of 6 and § computed from a sample are
significantly different one should suspect that the parametric

model fe does not fit the data. The Shapiro-Wilk statistics




for testing normality and exponentiality can be regarded as

comparing diverse estimators which minimize information of

order 1 and 2 respectively.

~

. v
One can interpret 6 and 8 as parameter values of 'best
approximating' models.
One wishes to evaluate Fg(x) and Fg(x) as smooth estimators

of F(x). For any parameter value §, define

~

Dy(w) = FglQ(u))
which is the sample quantile function of the transformed

random variables

U1 = Fe(Xl),...,U = Fe(Xn).

n

The true parameter value 6 has the property that Ul""'un

are distributed with a uniform [0,1] distribution. Then
parameter estimators § and § are compared by the character of

the closeness to the identity function D(u) = u of 5§(u) and

13g(u).
We call Be(u) a comparison distribution function. Its
derivative
dg(w) = {Dy(w))'
plays a basic role and is called a comparison density; formulas
for the comparison density are

dg(u) = £,(Q(W)  q(u)

£,(Q())
£ Qu)




An alternative comparison density introduced in Parzen

(1979), is

-~

d(w = £Qp(w) q(w) * o

o]

0 = [* £Q(w aCw) du,
0

D(u) = [¥ d(t) dt
o
where foQO(u) is a specified density-quantile function.

Parameter estimators can be justified as minimizing

information divergence

- . -
1,(d,) = g -log dg(u) du = I,(f;f,)

11(dy) = J' |log d (w)|? du = II(f;f,)

o

pe -1 1 .3 1-
Ia(de) I log g {de(u)} %du

fHag - 112

dqu = 1 1a, ()% du-1
o o

These measure the closeness to 1 of de(u), or the closeness to
D(u) = u of De(u). However the final decision about parameter
estimators should be based on visual inspection of the graph of

Be(u).




Another consequence of considering information of order
a is that we can unify the estimation criterion used to form
maximum likelihood estimators with the estimation criterion

used to form Gaussian time series parameter estimators:

1 fF(w)

I (f;fe) = log | o

sP o) e o

where f and fe are spectral densities. It is comparable to

12(36) = log fl ﬁgégl_ du
o feQ(u)
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7. Statistical inference reduced to density estimation

The quantile approach to statistical dafta analysis being

developed by Parzen [since Parzen (1979)] is based on the

proposition that conventional problems of statistical inference

concerning (1) a random sample Xl,....Xn, (2) a bivariate
sample (xl'Yl)""'(Xn’Yn)’ or (3) two samples Xl,...,Xm and
Yl""’Yn should be transformed to problems of functional

inference, estimating and testing hypotheses about density
functions d(u), d(ul,uz),...,d(ul,.w,uk), on the unit interval
O<u<l, unit square 0<u;,u,<l, unit hypercube O<u;,...,u.<l. To
illustrate how this is done consider the following problems.

Modeling Bivariate Data and Tests for Indpenedence. Let

X and Y be continuous random variables with joint density

function fx Y(x,y). The hypothesis, Ho: X and Y are independent

can be expressed
Ho: fx’Y(x»Y) = fx(x) fY(Y)

or in terms of information divergence

fo(x)f,(y)
w0 oo x Y
I(fx,Y;ffo) = !w Iw{-log —Y;—;T§T§y} fx,Y(x,y) dx dy
by
Ho: I(fX,Y; fyfy) = 0
Define

D(Ul;uz) = FX,Y(QX(UI)’QY(UZ))
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2
3
d(ul,uz) = 53;33; D(ul,uz)

. fX,Y(QX(ul)'QY(UZ))
£xQx(up) £yQy(uy)

We call d(ul,uz) the quantile dependencé density.

The hypothesis Ho can be expressed

Ho: D(ul,uz) = uu,, d(ul,uz) = 1,

One can verify that
I, (£, vifefe) = /1 1 {log d(uy,u,)} d(uy,u,) du,du |
LU,y iyl © 0 S g ¢lu;.Y2 up-Up) duidyy !

= - Hl(d(“l'uZ))

Thus estimating the information divergence between fx y and

ffo is equivalent to estimating the negative of the entropy of
d(ul,uz).
Estimators dm(u) dependent on a finite number of parameters

can be formed from the raw estimator

B(UI:uz) = EX'Y(ax(ul)u 6Y(u2))-

Modeling likelihood ratios and testing equality of

distributions. Let X and Y be continuous random variables.

The hypothesis

Ho: Fx(x) - FY(x), or fx(x) = fY(x)




can be expressed in terms of information divergence

w £y (x)
L(fyify) = fm -log T, dFy (y)

Mt -log d(u) du
! .

-Hqd (d(u))

defining the comparison distribution function and comparison

density function

D(u) = F,Qu(u), d(u) = & D(u) Ex(Qy (W)
u) = u), u) = u) =
XY du EYZQYZuSS

Estimating the information divergence between £y and fX is
equivalent to estimating the negative of the entropy in the

quantile-density sense of the comparison density d{(u).

8. Parametric-select density estimation and Maximum Entropy

Densities

A density d(u) = D'(u) can be approximated in many ways
by sequences dm(u),m=1.2,... of functions which converge to
d(u). For m=1,2,..., let am(u) be an estimator of dm(u); the
sequence Em(u) then estimates d(u).

1f dm(u) corresponds to a standard‘finite parametgric
model d(u) for which one could consider testing the hypothesis
that dm(u) provides an exact model, we call dm(u) a parametric-

select representation, and am(u) a parametric-select estimator,

4




to indicate that we are free to select the number of parameters

in dm(u)tn-provide an adequate approximation or representation
of d(u).
We call dm(u) a non-parametric representation, and am(u)
a non-parametric estimator, if dm(u) does not correspond to a
standard finite parameter model which could be interpreted as
an exact model.
An important criterion for developing the functional form
of exact models for densities is the maximum entropy principles.
A density f(x), -~<x<w, which maximizes entropy
H(f) = [“{-log £(x)}f(x) dx subject to constraints

- a0

!w Tj(x) f(x) dx = Ty j=1,...,k,

where Ti(x) are specified functions (called sufficient statistics)

and Tj are specified moments can be shown to have the representation,

called an exponential model,

k
1 f()‘ eT()-‘y(es'°°'e)
og f(x jzl j Tyx 1 K
where
- k
¥(8y,...,08,)= log {w exp {jzl ej Tj(x)} dx

guarantees that f(x) integrates to 1.

A quantile function q(u), O<u<l, which maximizes entropy

Hqd(q) = ]1 log q(u) du subject to the constraints
o
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[Hexp 2riwn) £,9,() a(w) du

e q q du
o

= p(v), v=0,%+1,...,+m
where foQo(u) is a specified density quantile function must have
the representation, called an autoregréssive model,

. . -2
q(u) = qo(u) c; |1+°m(1)e2“1u+...+am(m)e2"1um|

9. Exact-Parametric and Parameter-select Estimation of

Probability density Functions using Exponential Models

Two important exponential models for a density f(x),
-w<x<o are the normal density and the gamma density.

The normal density, denoted Normal (u,o)

=1 (X
fu'o (x) = < ¢ ( 5

1 1 .2

$(x) = — exp - b4

T Z

is exponential with sufficient statistics Tl(x) = x and
Tz(X) = x2.

The Gamma density, denoted Gamma (r,)) where X = l/o,
. | x
fr,o (x) = 5 £, (5) ,

r-1 e X , x>0 ,

1
fr(x) = Fz?)- X

=0 » x<0,
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is exponential with sufficient statistics Tl(x) = x and Tz(x)
= log x.

A location scale parameter Gamma density

£ (x)=%f

A =5 ' |
A r,u,go o

r

is not an exponential model. We can treat it as one by

estimating u (say, by the minimum x(l) of the random sample
xl,...,xn), and treating Xj-ﬁ as a sample from fr'o(x).

The hypothesis that the data is fit by a normal distribution
versus the hypothesis that the data is fit by a Gamma
distribution can be tested by forming an over-parametrized
exponential model with sufficient statistics

Tl(x) = x, Tz(x) = xz, T3(x) = x3, T4(x) = log x.

The (order 1) information divergence, or maximum likelihood,

~

estimators 61, 85, 83, 54, which minimize information divergence

of order 1 jl ‘-log ae(u) du, may be found for an exponential
o

model by solving
T = E§[Tj]
where Tj =~ Ee[Tj] is estimated by

~ — 1 n
57Ty AL Ty




o

The bi-information divergence estimators 51. 52, 53. 54.

which minimize information divergence flllog ae(u)lzdu, may
o

be found using least squares regression analysis techniques by
minimizing with respect to TERRRTAN the sum of squares
n-1 ~

jZZ |log f(X(j)) - {log f(Xj)}

= = 32
-6 (Tl(x(j)) - '1‘1)-...~ek (Tk(x(j))- Tk)l

Stepwise regression is used to suggest parsimonious parametrizations.
Graphical procedures to determine which parameter values

fit best are as follows: estimate BB(E%T)’ j=2,...,n-1, by

adding

4y GAD = £o(X5)) + £R(yy)

and normalizing the sum to go from 0 to 1. One inspects its

graph to see how it deviates from D(u) = u.

10. Case studies of bi-information density estimation

The density estimators corresponding to the bi-information
parameter estimates of the normal, gamma, and four-parameter

exponential models are presented for four simulated random

samples:
1) Exponential or Gamma (r = 1, ¢ = 1)
2) Gamma (r=10, o =1)




17

3) Normal (u =20, o = 1),
4) Contaminated normal: 100N(0,1),5N(10,1)

In addition density estimators, using bi-information
parameters, are presented for the data set of Buffalo snowfall.
Bi-information select regression estimation of the parameters
of a 4-paramential exponential model with sufficient statistics
X, xz, x3, and log x leads to the conclusion that Buffalo
snowfall obeys a Gamma distribution. It is equally well fit
by a normal distribution whose parameters are estimated by
minimizing bi-information rather than order 1 information.

The hypothesis that Buffalo snowfall is normal seems to be
acceptable, but one can question whether the maximum
likelihood estimators (sample mean and variance) orovide the
best-fitting normal distribution for Buffalo snowfall,

As in Parzen (1979), we reject a trimodal shape nrobability
density estimate for Buffalo snowfall, which has been found by

several non-parametric density estimation techniques;

including Tapia and Thompson (1978).




'
|
]
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